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ABSTRACT

DENSITY FUNCTIONAL THEORY INVESTIGATION ON THICKNESS
AND LOAD DEPENDENCY OF FRICTION FORCE BETWEEN

GRAPHENE AND AU INTERFACES

ŞENTÜRK, DUYGU GİZEM

M.S., Department of Physics

Supervisor : Assoc. Prof. Dr. Hande TOFFOLİ

February 2018, 76 pages

As the investigation of materials at nano scale become possible with today’s tech-
nology it is observed that some physical phenomenons have different characteristics
at atomistic scale than macroscopic one because of the quantum mechanical effects.
One of these physical processes that differs at nano scale is the friction force. While
it is expected that the friction force to be independent of contact area and velocity
according to Amontos-Coulomb laws, it was observed that it changes by the effect
of some parameters such as contact area, velocity, load and temperature at smaller
scales. This study will include nanotribological calculations which analyzes the fric-
tion force between objects at atomic level.

The lateral friction force that arises from the relative sliding motion of materials can
be investigated in experimental manner using the Friction Force Microscopy (FFM)
which is modified version of the Atomic Force Microscopy (AFM). It is also possible
to obtain a detailed understanding of friction in atomic scale by modelling the mecha-
nism of FFM using computational methods. The ab initio Density Functional Theory
(DFT) is one of these methods that one can perform accurate calculations for the rel-
ative sliding motion of FFM probe tip and the surface. The importance of these kind
of numerical methods is the convenience of investigating the wide range of material
interactions that are not achievable with experimental methods.

v



As it was observed that the two dimensional materials such as graphene, hexagonal
boron nitride(h-BN) , MoS2 provides good performance as dry lubricants, the scope
of the nanotribology studies shifted into the frictional behaviors of these systems and
their effects on other type of materials. In this thesis, we focus on the lateral friction
force between two dimensional graphene sheets and three high-symmetry surfaces of
gold. Our aim is to understand the results of FFM experiments by modelling the fric-
tion mechanism between Au coated probe-tip and graphene surface by implementing
static calculations based on Density Functional Theory. As the Au coated probe slides
over graphene, Au surfaces with different orientations would interact with graphene
surface and three of them namely Au(100), Au(110) and Au(111) are reviewed as
the subjects of this study. The effects of physical variables such as an external load
applied to structures and increasing the thickness of the surfaces were interpreted.

Results of this thesis can provide useful informations about minimizing the friction
between objects with the help of different parameters which would be beneficial in
industrial manner about reducing the loss of energy arises due to friction.

Keywords: Computational Physics, Density Functional Theory, friction, graphene,
gold
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ÖZ

GRAFEN VE AU ARAYÜZLERİ ARASINDAKİ SÜRTÜNME KUVVETİNİN
KATMAN SAYISI VE YÜKE BAĞLI DEĞİŞİMİNİN YÜK YOĞUNLUĞU

FONKSİYONELİ TEORİSİ İLE İNCELENMESİ

ŞENTÜRK, DUYGU GİZEM

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Doç. Dr. Hande TOFFOLİ

Şubat 2018 , 76 sayfa

Günümüzün gelişen teknolojisinin materyallerin nano boyutlarda incelenmesini müm-
kün kılmasıyla, atomistik boyutlarda önem kazanan kuantum mekaniksel etkilerin
sürece dahil olmasıyla birlikte makro ölçektekinden daha farklı işleyen fiziksel süreç-
ler araştırılabilmeye başlamıştır. Bahsi geçen değişikliklerden biri de sürtünme kuv-
veti üzerinde gözlemlenmiştir. Örneğin; Amontons-Coulomb kanunlarına göre temas
alanı ve hareket hızından bağımsız olması beklenen sürtünme kuvveti daha küçük
ölçeklerde, temas alanı, yük, hız ve sıcaklık gibi parametrelere bağlı olarak değiş-
mektedir. Bizim çalışmamız da nano boyutlardaki sürtünme kuvvetini inceleyen na-
notriboloji hesaplarını kapsayacaktır.

Malzemeler arasındaki yanal manipulasyona bağlı sürtünme davranışı deneysel an-
lamda Atom Kuvvet Mikroskobu(AKM) prensibine dayanan Sürtünme Kuvveti Mik-
roskobu(SKM) kullanılarak araştırılabilmektedir. Teorik anlamda sürtünme yapısının
Yük Yoğunluğu Fonksiyoneli Teorisi(DFT) aracılığıyla atomik düzeyde incelenme-
sinin mümkün kılınması ise hem incelenebilen materyal çeşidi konusunda sağladığı
esneklik hem de deneysel açıdan test edilmesi zor olan sistemlerin araştırılabilmesini
kolaylaştırması sebebiyle nanotriboloji çalışmaları konusunda nümerik uygulamala-
rın önemini artırmıştır.
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Grafen, hegzagonal boron nitrat(h-BN), MoS2 gibi iki boyutlu malzemeler, sahip
oldukları güçlü elektronik, mekanik ve optik özellikler sayesinde katı kayganlaştı-
rıcılar olarak iyi bir performans gösterdiklerinin keşfedilmesiyle nanotriboloji ala-
nında en çok dikkat çeken ve araştırılan materyallerden olmuşlardır. Çalışmamızda
metal kaplı iğne ucu ile iki boyutlu yüzey arasındaki yanal manipülasyona bağlı sür-
tünme kuvvetini ölçen bir SKM’nin nümerik olarak modellenmesi hedeflenmiştir. Bu
amaçla yüzey merkezli kübik kristal(FCC) bir yapıya sahip olan altın(Au) materyali-
nin Au(100), Au(110) ve Au(111) gösterimleriyle tanımlanan yüksek simetri arayüz
konfigürasyonları ve tek katmanlı grafen yüzeyi arasındaki etkileşim DFT hesaplama-
ları ile ele alınmıştır. Hesaplamalarımızda öncelikle yüzeyler arasındaki zayıf van der
Waals etkileşimlerini en iyi tanımlayan değiş-tokuş fonksiyonellerinin belirlenmesini
takriben bahsi geçen altın yüzeyleri ve tek katmanlı grafen yüzeyi birbiri üzerinde tek
yönde paralel olarak kaydırılarak elde edilecek yanal sürtünme kuvveti ve sonrasında
bu kuvvetin yüzeye dik olarak uygulanacak bir kuvvete bağlılığı incelenmiştir.

Bu tezden elde edilecek sonuçlara göre sürtünme kuvvetinin hangi yüzey etkileşim-
lerinde daha düşük olduğu ve kullanılan parametrelerin sürtünme davranışını hangi
boyutta azaltabileceği anlaşılabilecek ve bu bilgiler endüstriyel anlamda sürtünme et-
kisiyle kaybedilen enerji miktarının azaltılması amacıyla kullanılabilecektir.

Anahtar Kelimeler: Hesaplamalı Fizik, Yük Yoğunluğu Fonksiyoneli Teorisi, sür-
tünme, grafen, altın
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CHAPTER 1

INTRODUCTION

Even though we may not pay attention to it in our everyday lives, friction is one of

the most significant physical phenomenon that is essential for daily life because of

making some fundamental actions possible such as walking. It also plays a crucial

role in modern machinery where driving wheels, brackets in car engines are some of

the productive examples of friction. On the other hand the energy dissipation arising

due to friction force, in other words the physical resistance between bodies comes out

as a problem that one has to overcome in industrial manner because of its economical

impacts. Although friction has a great influence in nature with both its benefits and

disadvantages there is still no clear explanation about the physical processes behind

it.

In order to explain the detailed mechanism underlying the macroscopic and micro-

scopic scale friction and the properties that governs the physical resistance, "tribol-

ogy" has emerged as a popular research field in recent years due to the improvements

in technology. This term is derived from a Greek word "tribos" that means rubbing

and its first usage is in the Jost Report(1966) which is a study conducted to investi-

gate the wasted financial resources because of the friction [3]. Tribology includes all

researches on not only the process of friction but also wear and lubrication that can be

applied to various areas from aircrafts to mechanical interactions between biological

parts.

The experimental investigation of friction at the atomic scale has been made possi-

ble by the development of a new technique referred to as Friction Force Microscopy

(FFM), which is a modified version of the conventional Atomic Force Microscopy
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(AFM) technique. As the first investigations of atomic scale friction performed by

FFM technique in 1987 [4] revealed the atomic stick-slip motion of sliding surfaces,

the focus of tribology studies changed from macro scales to atomic scales and this

new field came to be called "nanotribology". Since the surface areas of the bodies in

contact consist of several small asperities at micro and nano scales even though they

seem perfectly smooth to the naked eye, the real surface area one should consider is

larger than the area presumed at the macro level. The main idea behind the instru-

ments is measuring the friction between a surface and the probe tip which represents

a single asperity [5].

A large body of theoretical work has been constructed over the years in order to ex-

plain the characteristic of friction. One dimensional Prandtl-Tomlinson (PT) [6],[7]

and Frenkel-Kontorova-Tomlinson (FK) [8] models are the simplest and most com-

monly used approaches in this field that describe the physical process of friction.

While these models successfully represent the certain superficial properties of fric-

tion, the actual mechanisms are much more complex. Therefore, nanotribology is

an intriguing subject also for computational scientist where several methods can be

employed to obtain a detailed understanding of this physical phenomena by mod-

elling the mechanism of FFM in wide range of material interactions. The Density

Functional Theory (DFT) is one of these methods that one can perform very accurate

static calculations for the relative sliding motion of FFM probe tip and the surface.

Fitting the outcomes to PT or FK models makes possible to acquire a detailed descrip-

tion of both the stick-slip characteristic of motion and the energy dissipation arising

through the interaction between materials.

In this thesis we aim to make a contribution to the understanding of tribology at the

nanoscale by investigating the manipulation of lateral friction force between two di-

mensional materials and metal surfaces using graphene and different low-dimensional

gold surfaces. Density Functional Theory is employed to obtain the characteristics of

materials and their interactions during lateral motion of monolayer graphene on Au

interfaces. The effects of physical variables such as an external load applied to struc-

tures and increasing the thickness of the surfaces were studied in accordance with the

mentioned friction models.
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1.1 The History of Tribology

Throughout the history from ancient times to recent days friction has attracted the

attention of people where creating fire by rubbing branches together can be thought

of as an example of one of the first innovations of humankind from a tribological

point of view. The awareness of friction that technology was invented by using it

or against it by the first people, became a scientific thought where formulations and

ideas of dissipation were enhanced in following eras [9].

The earliest formal treatment of tribology were performed by Leonardo Da Vinci

(1452-1519) where his studies include the friction on inclined and horizontal planes

and low-friction bearings. He demonstrated that friction is linearly proportional to

applied normal load (FN ) but independent of the contact area size [10] and intro-

duced the friction coefficient as proportionality between the friction force (Ff ) to

normal load. Another scientist named Guillaume Amontons (1663-1705) also inves-

tigated the nature of macroscale friction and deduced the same observations with

Da Vinci more than hundred years later. Since Da Vinci’s observations had not

been published, these two fundamental principle of macroscale friction is known as

the "Amontons’ Laws of Friction" [11]. In the eighteenth century, mathematician

Leonard Euler(1707-1783) emphasized the difference between the static and kinetic

friction. Charles Augustin de Coulomb (1736-1806) contributed a third principle

based on his experiments achieved in different environmental conditions that the fric-

tion force is independent from the sliding velocity of contacts[12]. Finally the three

fundamental laws of friction in macroscale are:

• Amontons’ first law: Friction is independent from the area size of the contact-

ing bodies.

• Amontons’ second law: Friction is directly proportional to the applied normal

load.

• Coulomb’s law: Friction is independent from the relative sliding velocity of

bodies.

Following that, Isaac Newton (1642-1727) formulated these three principles and in-
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troduced the friction coefficient as ratio of friction force to normal load as

Ff = Fnµ (1.1)

Here in Eq. 1.1 static friction can also been demonstrated which is the maximum

value that had to be reached in order to system start sliding lateral motion. In addition

to these laws, it was later observed that the actual area of the rough surfaces consisting

of multiple nanoscale asperities is different than apparent contact area and friction

force was reformulated by Bowden and Tabor as

Ff = τ
∑

Aasp (1.2)

where τ is effective shear strength between surfaces and Aasp represents the area of

each small asperity [13]. Even with the increased sophistication, all these models

remain to be inadequate for explaining the origins of friction at the microscopic level.

A better understanding of friction requires detailed theoretical modelling as discussed

in the next subsection.

1.2 Theoretical Models for Friction

The Prandtl-Tomlinson (PT) model rationalizes the Stokes and Coulomb approxima-

tions regarding the force resisting motion. While Stokes claims that the drag force

linear in the relative velocity between solid and fluid, according to Coulomb the ki-

netic friction Fk is independent of velocity [14].

The PT model can be considered as the basis for dry friction and is used to explain

the effect of such parameters as the plasticity, elastic constants, velocity and friction.

However, there is a deficiency in the model since the change in the surface potential

due to wear is ignored. This deficiency can be eliminated by taking into account

plastic deformation. This model that is proposed at 1928, contains both the motion of
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Figure 1.1: Prandtl-Tomlinson model: A point mass dragged in a periodic potential.

the point mass in a periodic potential and the influence of thermal fluctuations which

leads to a logarithmic dependency of frictional force on the velocity. The PT model

can also be thought of as an independent oscillator model which describes the motion

of a point particle of mass m, dragged through a potential landscape with velocity v0

as illustrated at Figure 1.1 [15]. The spring corresponds to the elastic coupling of a

surface to the point particle where the point particle represents an atom. The general

equation of motion for this model

mẍ = k(v0t− x)− ηẋ−N sin (2πx/a) (1.3)

where x is the position of the point particle with mass m, η is the damping factor, k

is the stiffness of the pulling spring, N is the amplitude of the periodic potential and

a is the spatial period of the potential. The motion of the point mass considered as it

follows a non-continuous path with stick-slip behaviour when the spring is assumed

soft enough. In the case of a soft spring, the spring force F becomes constant over

one or several periods.

One of the fundamental outcomes Prandtl proposes with this representation is the re-

lation between static and dynamic friction where the maximum value of the lateral

force that the body experiences before starting to move should be equal to the max-

imum value of static friction. In terms of the spring model this static well is derived

proportional to critical spring stiffness as F = Nsinkcx. The characteristic of the

motion of point mass at the end of the spring can be demonstrated as follows. In

the case of ks < kc stick-slip behaviour occurs with sudden jumps with respect to the

magnitude of the ratio of critical stiffness kc and spring stiffness ks and if ks > kc par-

ticle achieves a continuous movement along sinusoidal path. The energy landscape
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Figure 1.2: Characteristic of motion with respect to spring stiffness. Source [1]

of the motion is as illustrated at Figure 1.2

The sliding particle starts out stuck at a certain position at the edge of potential well

designated by U(x) until the force applied by the spring exceeds the maximum static

friction force at which point particle suddenly slips over the potential barrier. During

the stick phase of the particle, friction force builds up while it reduces as slipping

occurs [16]. One example to clarify the variation of friction force during atomic

stick-slip behaviour, the friction loop during sliding of NaCl(100) surface forward

and backward is presented at Figure 1.3.

Figure 1.3: Friction force hysteresis along position of particle at FN=0.65 [nN] and

v0=25 [nm/s]. Taken from [2]

The saw-tooth like picture of friction force as a function of relative position of mass

at Figure 1.3 shows the sign changes along forward and backward lateral forces FL.

If the system experiences the continuous sliding, the saw-tooth picture of friction

turns into a smoother variation. Average value of the lateral forces that corresponds
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to average amount of energy dissipated per scanning distance, determines the friction

force of system [16].

Fx = 〈Fl〉 (1.4)

In tribology experiments using FFM such as the one conducted by Bouhacina et al.,

it was observed that the friction has a logarithmic dependency on velocity [17] at

finite temperature. Until this point, PT model was described at zero temperature. The

mechanism of the PT model states that, after the critical force is reached at stick-slip

motion, mass jumps through one potential minimum to another and even if the applied

force is reduced, the body continues its motion under the effect of the initially applied

force. However, when temperature is included in the considered system, the body can

jump over the potential energy barrier without any external force but just due to the

thermal activation. The dependence of friction to velocity related to thermal activity

is expressed as

v ≈ Ce−U0/kBT Fa

kBT
(1.5)

where F is the spring force, U0 is the periodic potential with period a, kB Boltzmann

constant and T is the absolute temperature [15].

The phase-space illustration for effects of both change in velocity and spring stiffness

on relative motion of spring and tip is shown at Figure 1.4 where the x axis corre-

sponds to stiffness and y-axis is the increasing velocity of the spring while spring is

always in front of the point mass. Whereas the influence of velocity on the difference

between the location of point mass xm and the other end of the spring Xs is relatively

low, it is larger for soft springs. For the lateral force Fl = ks(Xs − xm), the more

lubricant case would be observed with increasing stiffness of the spring that can be

called spring-free condition.

In addition to stiffness and velocity, external applied load also affects the value of the

friction force. The increasing normal load leads to a higher interaction with increasing
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Figure 1.4: Displacement between spring and tip positions dependent to variation in

velocity and stiffness

contact area of the bodies and thus higher potential energy barrier would occur for

the mass jump over. This result, which follows from the PT model is consistent with

macroscopic friction laws.

It is possible to extend this one-dimensional model to sliding bodies represented by

many independent atoms coupled by springs with different stiffness. This is the so-

called Frenkel-Kontorova (FK) model which is more realistic than PT model to ex-

press the interaction between relative sliding surfaces.

The dependencies of the friction force on the stiffness, normal load, velocity and

temperature have been investigated both theoretically and experimentally. A brief

summary of the previous studies in literature that investigated the load and thickness

dependency of friction will be presented next in accordance with the scope of our

study.

1.3 Literature Review

First-principles quantum mechanical materials modelling methods such as Density

Functional Theory (DFT) has emerged as a powerful tool in nanotribology studies.

One of the earliest atomic scale friction studies using DFT was conducted by Zhong
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et. al. [18] which was also used as an instructive study for our research. In this work,

friction between Pd atoms and graphite under external load was investigated and it

was observed that the friction coefficient increased with applied load in agreement

with the AFM studies.

It is later observed that graphene, produced by cleaving graphite, has superior fric-

tion behaviour that makes it a good candidate as a lubricant. In the contrast to three

dimensional materials where the lower friction is obtained at high stiffness, graphene

leads lower friction when it is in flexible form. One of the studies investigating the

properties of graphene such as the AFM study conducted by Lee et al. [19] revealed

that friction increases as the number of graphene layers stacked decreases, which is

related to the higher stiffness of the thin layered systems [20]. This experimental ob-

servation was supported by ab initio DFT studies such as the one performed by Righi

et. al. [21] presented the PES corrugation by including the effect of van der Waals

(vdW) interactions and concluded that when graphene layers are tightly bound to the

substrate, both the vertical and lateral stiffness decreases as the number of layers in-

creases. Following these studies that focused on the nanotribological properties of

graphene, the investigations about the influence of graphene on other types of ma-

terials were conducted. One of these studies presented by Cahanagirov et. al [22]

stated that inserting bilayer graphene between two Ni(111) interfaces leads to lower

friction than monolayer graphene-Ni(111) coupling. The load carrying capacity of

graphene was also one of the intriguing subjects to investigate. The AFM experi-

ments of Filleter et. al. on single and bilayer graphene sheets grown on SiC suggest

that there is a linear proportionality between load and friction force for graphene[23].

In addition, studies utilizing Molecular Dynamics(MD) suggest that in the low-load

regime graphene increases the load carrying capacity of surfaces such as presented in

the study of Klemenz et. al. [24] where the frictional behaviour of Pt(111) surface

with and without graphene wear was discussed.

Other two dimensional materials namely MoS2, fluorographene and WO2 have also

been considered as promising lubricants. Cahangirov et. al [25] observed that these

materials show low stiffness even in high loads where the materials avoid stick-slip

sliding and follows a continuous sliding path when they reach the critical stiffness.

This study performed by ab initio calculation methods was achieved based on Prandtl-
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Tomlinson model and friction force and stiffness of the materials as a function of

external load was calculated. The results are consistent with the friction calculations

of Zhong mentioned above. The MoS2-graphene interface also shows remarkable

superlubricity properties. The study conducted by Wang et. al. [26] proposed that the

key reason behind the potential energy corrugation and friction in the atomic scale

is the interlayer charge density fluctuation instead of the average charge density or

adhesion energy.

The load dependency of metallic surfaces was also investigated with the DFT method.

One of these studies is the one conducted on the dry and wearless Cu(111) interface

by Wolloch et. al. [27] reveals that there is an exponential increase in friction force

proportional to applied load. This result is consistent with the experimental study of

Gosvami et al. [28] observed for Au(111) and Cu(100) interface that there is a strong

increase in friction at high loads.

1.4 Outline

In this thesis, we focus on the lateral friction force between two dimensional graphene

sheets and three high-symmetry surfaces of gold. Our aim is to understand the re-

sults of FFM experiments by modelling the friction mechanism between Au coated

probe-tip and graphene surface by implementing static calculations based on Density

Functional Theory. As the Au coated probe slides over graphene, Au surfaces with

different orientations would interact with graphene surface and three of them namely

Au(100), Au(110) and Au(111) are reviewed as the subjects of this thesis. In order

to determine the variation in energy and lateral friction force along zigzag orienta-

tion on the x-y plane, interaction between Au interface and graphene monolayer was

calculated one-by-one for each position during the lateral motion of graphene. The

results we obtained were analysed and the effect of applied normal load and thickness

of surfaces were investigated.

This thesis consists of five parts. In Chapter 2 a brief explanation for Density Func-

tional Theory is presented. The procedure of calculations including the chosen pa-

rameters and how DFT is applied to this kind of dynamical systems with van der
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Waals interaction is justified. Chapter 3 contains the study on graphene-graphene in-

teraction which is performed as a benchmark study in order to determine the proper

procedure and parameters of friction analyses. Both the number of layer and load

dependency of friction between graphene layers are presented. Chapter 4 includes

the outcomes of graphene-Au interactions in a comparative representation by deter-

mining the external effects to manipulate the friction force between different oriented

interfaces. In Chapter 5 a discussion and the summary of all results we obtained is

provided.
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CHAPTER 2

DENSITY FUNCTIONAL THEORY

Thanks to rapid developments in computational techniques and computer power the-

oretical prediction of materials properties at the atomic scale possible. Density Func-

tional Theory (DFT) is regarded as the state-of-the-art ab initio approach for materials

modelling where it provides accurate information for a large scale of fields from bio-

logical sciences to mineralogy. The main idea behind DFT is shifting the focus from

the unattainable many-particle wavefunction to the electronic charge density. This

conversion proposes a much simpler mathematical solution by decreasing the num-

ber of variables. In this chapter, we outline the basic ideas behind DFT and present

the approximations that have been developed to make this method practically viable.

2.1 Many Body Schrödinger Equation

The ground and excited states can, in principle, be obtained by means of solving the

many-particle Schrödinger equation for the wavefunction Ψ. The time-independent

form of Shrödinger equation is

(− h̄2

2m
∇2 + V )Ψ = EΨ (2.1)

Here the sum of kinetic and potential energies in parenthesis at left hand side of the

Eq. 2.1 is called the Hamiltonian operator (Ĥ). The Hamiltonian consists of the

interactions of Nn nuclei and Ne electrons as follows
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Ĥ =
−h̄2

2me

Ne∑
i

52
i −

h̄2

2MI

Nn∑
I

52
I +

1

2

e2

4πε0

Ne∑
i 6=j

1

|~ri − ~rj|

+
1

2

e2

4πε0

Nn∑
I 6=J

ZIZJ

|~RI − ~RJ |
− e2

4πε0

Ne,Nn∑
i,I

ZI

|~ri − ~RI |

(2.2)

The terms on the right hand side of the Eq. 2.2 are the electronic and nuclear kinetic

energies, repulsive Coulomb interaction between electrons and between nuclei and

finally the attractive interaction between electrons and nuclei, respectively. ~RI is the

position of I th nucleus and ~Ri is the ith electron’s position whereme andMI are mass

of electron and nucleus. For convenience atomic units are used for Ĥ representation

rather than SI units by employing the Hartree energy in Eq. 2.4 and Bohr radius terms

in Eq. 2.3.

a0 =
4πε0h̄

2

mee2
(2.3)

EH =
h̄2

mea20
=

e2

4πε0
(2.4)

Then the Hamiltonian in terms of atomic units becomes

Ĥ = −
∑
i

52
i

2
−
∑
I

52
I

2MI

−
∑
i,I

ZI

|~ri − ~RI |
+

1

2

∑
i 6=j

1

|~ri − ~rj|
+

1

2

Nn∑
I 6=J

ZIZJ

|~RI − ~RJ |

= T̂e + T̂n + V̂en + V̂ee + V̂nn

(2.5)

It is known that nuclei are heavier than electrons and they move much slowly where

electrons change positions with respect to nuclei. In order to reduce the complexity of

interaction, Born and Oppenheimer proposed an approximation which assumes that

the motion of electrons and nuclei independent which means that the Hamiltonian
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operators corresponding to the two species can be written independently. Using this

approximation the electronic Hamiltonian can be written in the much simpler form

[29]:

Ĥ = −
∑
i

52
i

2
+
∑
i

V̂en(~ri) +
1

2

∑
i 6=j

1

|~ri − ~rj|
(2.6)

where V̂en(~ri) is the electron-nucleus interaction term

V̂en(~ri) = −
∑
i,I

ZI

|~ri − ~RI |
(2.7)

The Electronic Density

Despite these approximations, solving the Hamiltonian in Eq. 2.6 is still a tough

problem due to the complexity of wavefunctions with three dimensions. As men-

tioned previously, the electronic density is introduced instead to simplify the math-

ematical treatment. The density is obtained by calculating the expectation value of

the single particle density operator expressed in Eq. 2.8 with respect to many-body

wavefunction as shown in Eq. 2.9.

n̂(~r) =
N∑
i=1

δ(~r − ~ri) (2.8)

〈Ψ|n̂(~r)|Ψ〉 =
∑
i

∫
|Ψ(~r1, · · · , ~rN)|2δ(~r − ~ri)d~r1 · · · d~rN

=

∫
|Ψ(~r, ~r2 · · · , ~rN)|2d~r2d~r3 · · · d~rN

+

∫
|Ψ(~r1, ~r, ~r3 · · · , ~rN)|2d~r1d~r3 · · · d~rN + · · ·

= N

∫
|Ψ(~r, ~r2, · · · , ~rN)|2d~r2d~r3 · · · d~rN

≡ n(~r)

(2.9)
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Here ~ri defines the position of each indistinguishable electron and due to the assump-

tion of normalization of the wavefunction, an integral of the density over the entire

space would yield the total number of electrons.

2.2 The Total Energy

The total energy many-body system must be reformulated in a rather complicated

form by employing the density representation. The expressions for all terms of Hamil-

tonian in Eq. 2.6 are examined one-by-one below in terms of density by taking

the expectation values of each operator. First the expectation value of Coulombic

electron-nucleus interaction operator by utilizing the many-body wavefunction

Ene = 〈Ψ(~r1, · · · , ~rN)|V̂ne|Ψ(~r1, · · · , ~rN)〉 (2.10)

Then employing the definition of density at Eq. 2.9 yields;

Ene = −
Nn∑
I

[∫
ZI

|~r1 − ~RI |
n(~r1) +

∫
ZI

|~r2 − ~RI |
n(~r2) + · · ·

]
(2.11)

Here the position variables can be replaced with a dummy variable ~r reducing the

equation Ne equal electron-interaction terms. Eq. 2.11 can be simplified as

Ene =−
Nn∑
I

∫
ZI

|~r − ~RI |
n(~r)d~r

=

∫
n(~r)v̂ne(~r)d~r

(2.12)

Other terms of Hamiltonian can not be converted in exact way due to fact that the

operators in question have either two-body terms or contain a derivative operator as

in the case of kinetic energy. Let us start out with the electron-electron interaction

term. The expectation value of the relevant operator is
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〈Ψ(~r1, · · · , ~rN)|V̂ee|Ψ(~r1, · · · , ~rN)〉 =
1

2

Ne∑
i

Ne∑
i 6=j

∫
V̂ee|Ψ(~r1, · · · , ~rN)|2d~r1 · · · d~rN

(2.13)

where the prefactor 1
2

is introduced in order to prevent double-counting. We devel-

oped Eq. 2.13 by means of explicitly writing out some of terms in the sum

Eee =
1

2
[

∫
ZI

|~r1 − ~RI |
d~r1d~r2

∫
|Ψ(~r1, · · · , ~rN)|2d~r3 · · ·~rN

+

∫
ZI

|~r2 − ~RI |
d~r1d~r3

∫
|Ψ(~r1, · · · , ~rN)|2d~r2d~r4 · · ·~rN + · · · ]

(2.14)

There are Ne(Ne − 1) term in the sum in Eq. 2.14 and by manipulating the integral

we obtain

Eee =

∫
1

|~r − ~r′|
d~rd~r′[Ne(Ne − 1)

2

∫
Ψ(~r, ~r′)d~r3d~r4 · · · d~rN ] (2.15)

where the right hand side term corresponds to two particle density as shown at Eq.

2.16 and it consists of both the correlated and uncorrelated portions.

Ne(Ne − 1)

2

∫
|Ψ(~r, ~r′, · · · , ~rN)|2d~r3d~r4 · · · d~rN ≡ n(2)(~r, ~r′) (2.16)

Up to this point, the treatment presented above has been exact. However, the pactical

implementation of DFT relies on the expression of each term in the energy in terms

of the single-particle density. Fortunately, in large systems, the uncorrelated part of

the two-particle density is much larger than the correlated part. In order to facilitate

the use of this observation in out equations, we separate these two parts as:

n(2)(~r, ~r′) = n(~r)n(~r′) +4n(2)(~r, ~r′) (2.17)
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where ∆n(2)(~r, ~r′) is the correction term. Following this conversion the electron-

electron interaction energy can be expressed as

Eee = −1

2

∫ ∫
n(~r)n(~r′)
|~r − ~r′|

d~rd~r′+4Eee (2.18)

where the first term on the right hand side corresponds to Hartree energy EH and

4Eee is the correction term for energy.

The expectation value of kinetic energy operator also needs special consideration,

since it contains a derivative term. In order to eliminate this problem electron density

is defined as a collection of non-interacting particle orbitals, refered to as the Kohn-

Sham orbitals φn(~r). The single-particle orbitals are defined and determined with

the same logic of Hartee-Fock formalism with the difference that the density defined

by utilizing these non-interacting particles should be in consistent with the ground

density of the real system. The density as a sum of norm squares of single particle

orbitals is;

n(~r) =
Ne∑
n

|φn(~r)|2 (2.19)

This is the so-called Kohn-Sham ansatz. The kinetic energy as a function of these

orbitals can be expressed as

T = −1

2

Ne∑
n

∫
φ∗n(~r)52 φn(~r)d~r +4T (2.20)

The first term on the right-hand side is slit into two terms: the kinetic energy of the

noninteracting system of particles and the difference between this and the true ground

state energy, T. Then the total energy in terms of density becomes
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E = −1

2

Ne∑
n

∫
φ∗n(~r)52 φn(~r)d~r +

∫
n(~r)Vne(~r)d~r

+
1

2

∫ ∫
n(~r)n(~r′)
|~r − ~r′|

d~rd~r′+4T +4Eee

= T + Vext + VH + Exc

(2.21)

As a result, the exact transformation can be achieved from wavefunction to density ex-

cept the additional4T +4Eee part of the equation which is defined as the exchange-

correlation energy Exc.

2.3 Exchange-Correlation Functionals

Exchange-correlation energy represented at Eq. 2.21 as a correction term consists

of the exchange energy 4Eee which arises from Pauli repulsion between electrons

and the correlation term 4T arises from the dynamic correlation [30]. Expressed

in another way, Exc is the difference between the exact total energy of real system

and the Hartree energy of non-interacting Kohn-Sham orbitals. The main complica-

tion of DFT while calculating the ground state energy occurs while determining the

system Exc accurately. In fact, the accuracy of the particular DFT calculation de-

pends principally upon the sophistication of the exchange-correlation approximation

used. There are two fundamental approximations developed with this purpose are the

so-called Local Density Approximation (LDA) and Generalized Gradient Approxi-

mation (GGA).

The main idea behind LDA is assuming that the actual system density is smooth

enough that it is justifiable to treat it as a locally homogeneous electron gas. For the

implementation of LDA, the nonhomogeneous, real system is imagined to be divided

into infinitesimally small uniform cells with an assumption of having constant density

n(~r). Adding up the contributions of energy per particle, εxc(n) of each cell yields

ELDA
xc [n] =

∫
n(~r)εxc[n]d~r (2.22)
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which is an expression of Exc directly in terms of density. In this simple approxi-

mation , exchange energy is overestimated while correlation term is underestimated.

However, the LDA approach still valuable for the description of the bulk properties

with uniform charge densities.

The accuracy of the LDA predictions cam be improved significantly by means of

including not only the single particle density but also the gradient of density which

includes some of the nonhomogeneous character of the true density in a semilocal

manner. This approach is referred as the generalized gradient approximation (GGA)

and is more eligible for non-uniform systems.

EGGA
xc [n] =

∫
n(~r)εxc[n(~r),5n(~r)]d~r (2.23)

Several kinds of functionals have been devepoled based on GGA by manipulating the

terms in the square-bracket at Eq. 2.23 in order to describe different kind of systems

and the most popular one is PBE(Perdew, Burke and Ernzerhof) [31]. These semi-

local functionals are fairly accurate in the calculation of geometry, elastic and band

structure of materials with good description of ionic, metallic and covalent bonds.

However due to the enormous representation of the long-range behavior of the true

electron density, vdW interactions cannot be handled using standard LDA or GGA.

This topic shall further be explored in the upcoming sections of this thesis.

2.4 Hohenberg-Kohn Theorem

Two important theorems which established the foundations of DFT were proposed by

Hohenberg and Kohn in 1964 [32]. These two theorems can be expressed briefly as

follows:

The first theorem states that the external potential of nuclei, Vext, is an unique func-

tional of density. In other words a given density is a non-degenerate ground state

density for just one Vext with one-to-one correspondence and another external poten-

tial on the system would give rise different density [33].
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Vext ⇔ n(~r) (2.24)

The second theorem states that in any quantum state energy is a functional of density

and any density other than that of the ground state would lead to a higher energy than

ground state energy.

E0[n0(~r)] < E[n(~r)] (2.25)

Here E0 is the ground state energy and n0(~r) is the ground state density while E is

the total energy written as a functional density n(~r). It follows that one can obtain

the ground state density by using the variational principle as minimizing the energy

functional with respect to ground state density as follows:

δE[n]

δn
= 0 (2.26)

2.5 The Kohn-Sham Equations

Kohn-Sham method [34] makes an assumption for electronic density by expressing

the real system density using a non-interacting reference system consisting of Kohn-

Sham orbitals φi(~r). The expression of density in terms of these auxiliary orbitals

is as mentioned at Eq. 2.19. The minimization of the energy by Hohenberg-Kohn

variational principle shown at with respect to KS orbitals as shown in Eq. 2.26 yields

the orbitals that give rise to ground state energy;

δE

δφ∗i (~r)
=

δTks
δφ∗i (~r)

+

[
δEext

δn(~r)
+

δEH

δn(~r)
+
δExc

δn(~r)

]
δn(~r)

δφ∗i (~r)

= εiφi(~r)

(2.27)
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Here Tks is Kohn-Sham kinetic energy in terms of non-interacting particles adds up

to the same value as the real system kinetic energy without the correction term 4T
included in the exchange-correlation energy Exc. Thus, KS equation can be written

in its final form as

− 1

2
52 φi(~r) + [Vext(~r) + VH(~r) + Vxc(~r)]φi(~r) = εiφi(~r) (2.28)

where the collection of terms inside the square brackets are denoted as Kohn-Sham

potential VKS and the many-body Schrödinger equation becomes:

[T̂ + V̂KS]φi = εiφi (2.29)

All the potential terms at KS equation directly depend on the density which means

that the potential changes with density which requires to be solved self-consistently

as shown at the flowchart in Figure 2.1

2.6 The Plane Wave Basis and The Pseudopotentials

In order to achieve the iterative calculation of Kohn-Sham equations in an accurate

and efficient manner one needs to describe the non-interacting electron system in

terms of an appropriate basis set of functions. The plane-wave basis (PW) set is

usually truncated using the criterion that the largest kinetic energy of a PW in the basis

be smaller than a predetermined cutoff energy Ecut. The accuracy of the calculation

can be tuned by adjusting the Ecut in a systematic manner. Despite the simplicity of

implementation associated with a PW set, when all electrons in a system are taken

into account, a very large PW set is required to resolve the oscillatory behavior near

the core region. The pseudopotential approach was introduced in order to tackle this

problem.

The electrons of an atom can be classified as "core" and "valence" electrons with re-

spect to the shells they occupy. Core electrons are localized around nuclei with closed
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Figure 2.1: Kohn-Sham self-consistency cycle

shell orbitals and the relatively distant ones that involve the interactions and chem-

ical bond formation are valence electrons. The wave functions of core and valence

electrons are orthogonal to each other and in the core region, rc ≤ r, valence wave-

functions display oscillatory behavior as shown in Figure 2.2 with dashed lines. Here

it is also seen that the interaction potential V that induces the oscillation in the core

region is very large.

Pseudopotential approach is based on the idea of using a pseudo wavefunction Ψpseudo

that acts only on the valence electrons and includes the Coulombic potential of the

nucleus and the screening effect of the core electrons. This method is also referred

to as the frozen-core approximation and relies on the generation a smooth Ψpseudo for

core region to reduce the required PW cut off energy with high accuracy Then the po-

tential V is replaced to a weaker potential Vpseudo which has identical valence electron

wavefunctions outside the core region r ≥ rc. In this thesis ultrasoft pseudopotentials

developed by Vanderbilt [35] are used since this method gives an opportunity to use

fewer planewaves with high accuracy. The effectiveness of ultrasoft type pseudopo-

23



Figure 2.2: Pseudopotential and pseudowave function with respect to real system

tentials for graphene sytsem is examined in detailed at Chapter 3.

2.7 The van der Waals Interaction

Despite the fact that LDA and GGA are sufficient to determine the covalent inter-

actions, vdW forces arising from long-range electron interactions can not expressed

accurately by conventional DFT. To fix this inadequacy several approaches have been

employed in order to obtain a correct definition of dispersion relation in systems cou-

pled via non-covalent interaction. Dispersive vdW interactions arise from instanta-

neous dipole fluctuations between neutral fragments of the total system. The simplest

approach would be to add an empirical term to the KS energy to represent these in-

teractions:

E = EKS + Edisp (2.30)

where
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Edisp = −C
IJ
6

R6
IJ

(2.31)

The pairwise dispersion energy given in Eq. 2.31 in terms of the distance between

weakly interacting species I, J and the dispersion coefficient CIJ
6 is the so-called

London dispersion. CAB
6 , on the other hand, is a function of the ionization potential

and polarizability of particles.

DFT-D method developed by Grimme [36] that is one of the earliest corrections built

on this pairwise dispersion as

Edisp = −s6
CIJ

6

R6
IJ

f6(RIJ) (2.32)

This correction regulates the Edisp by adding a damping factor as a function of dis-

placement RIJ as seen at Eq. 2.32. f6(RIJ) converges to zero as RIJ approximates

to zero or infinity to prevent the diverging repulsive forces when the atoms gets close.

The scaling factor s6 is a parameter that depends on the functional used with DFT-D

correction.

DFT-D is an empirical correction and although it gives closer results to experimental

values , due to the weakness at calculation of heavy elements, a next generation DFT-

D2 method was developed which differs from the previous in its approach to the

calculation of the CIJ
6 and the scaling parameter. However, DFT-D2 still does not

work for metals properly [37]

Since, in reality, the KS and dispersive contributions cannot be separated as shown in

Eq. 2.30 an improved correction than pairwise dispersion by introducing a correla-

tion kernel function K(~r1, ~r2) that depends on electron position, density and gradient

of density. This method relies on calculating the long range electron interaction in

terms of density by both calculating the density variation in distant regions and their

correlations. Thus, the exchange correlation energy in the Kohn-Sham equation is

redefined with vdW correction where the non-local correlation energy Enl
c is shown

at Eq. 2.33 with charge density n(~r).
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Enl
c =

1

2

∫ ∫
K(~r1, ~r2)n(~r1)n(~r2)d~r1d~r2 (2.33)

The earlier and one of the most popular non-local correction is vdW-DF [38]. The

exchange correlation density is arranged as collection of the non-local energyEnl
c and

the local or semi-local energy terms calculated using LDA or GGA approximations

as

EvdW−DF
c = ELDA/GGA

c + Enl
c (2.34)

vdW-DF functional is an ab initio approach in contrast with DFT-D type dispersion

corrections. However, this method also has some weaknesses such as overestimation

of the interaction energy. Functionals such as PBE and revised PBE namely revPBE

[39] are commonly preferred for use together with the vdW-DF method. Since the

vdW-DF and revPBE combination overestimates the equilibrium interlayer distance

at structure optimization due to the repulsive characteristic or revPBE functional,

PW86 [40] exchange functional was considered but was also seen to create some

drawbacks such as overestimating the binding energy. However, the vdW-DF-C09

[41] correlation with the Cooper correction on the exchange functional and its revised

version vdW-DF2-C09 was observed to achieve the agreement with experiment more

accurately especially for graphene metal interaction as proposed by Hamada et. al.

[42].

In our calculations that will be mentioned in Chapter 3, the vdW interactions between

graphene sheets are calculated by employing DFT-D, vdW-DF and VDW-DF2-C09

functionals for purpose of comparison. These preliminary calculations suggest that

the Cooper correction provides the closest agreement with experiments and literature.

2.8 Calculation Details

Plane-wave self consistent field (PWscf) approach based the Quantum Espresso (QE)

package was utilized for the DFT calculations in this thesis [43]. QE performs self

26



consistent iterative calculations for Kohn-Sham equations with user defined pseu-

dopotential and exchange-correlation selections.

For the graphene/graphene interaction reported in Chapter 3, convergence achieved

by implementing the Monkhorst-Pack schemed [44] 12x12x1 k-point grids for a 1x1

unit cell of graphene. A kinetic energy cutoff of 40 Ry for wavefunctions and 400 Ry

for charge density are employed.

In Chapter 4, different k-point grids are used with respect to the size of particular

unit cells for each Au interface/graphene configuration. All the other calculation

parameters remain the same.

2.8.1 Structure Optimization

Geometry optimization is performed in order to determine the minimum energy con-

figuration of the system which satisfies the condition of zero force on all atoms. This

structure relaxation relies on the Hellman-Feynman theorem [45],[46] which states

that the variation of the energy with respect to atomic positions, directly depends on

the variation of Hamiltonian rather than the change in wavefunction. The fundamen-

tal steps of the theorem ca be outlined as follows:

~Fi = − ∂E
∂ ~Ri

= −∂〈Ψ|Ĥ|Ψ〉
∂ ~Ri

= −〈 ∂Ψ

∂ ~Ri

|Ĥ|Ψ〉 − 〈Ψ| ∂Ĥ
∂ ~Ri

|Ψ〉 − 〈Ψ|Ĥ| ∂Ψ

∂ ~Ri

〉

= −Ei
∂〈Ψ|Ψ〉
∂ ~Ri

− 〈Ψ| ∂Ĥ
∂ ~Ri

|Ψ〉

= −〈Ψ| ∂Ĥ
∂ ~Ri

|Ψ〉

(2.35)

The structure relaxation is implemented in parallel with self consistent calculations.

First the net force on each atom is obtained for an initial set of nuclear coordinates

by conducting the ground state energy calculations for the given configuration. Then,

by changing the positions of nuclei slightly along the direction of the forces, the
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ground state energy and density are recalculated for the new configuration of atoms.

Iterative calculations are performed until a user defined threshold is achieved for the

force acting on each atom. The relaxed atomic positions, final values of force and

considering ground state energy are stored in output files.

2.8.2 The Calculation of the Friction Force

The friction force under the influence of varying magnitudes of external normal load

between graphene layers and Au/graphene interfaces is investigated using the model

developed by Zhong and Tomanek [18] for their Pd-graphite system. Brief informa-

tion about this calculation method can be given as follows:

First the magnitude and variation of normal force as a function of interlayer separation

distance of surfaces is obtained

FN = −∂Ead(z)

∂z
(2.36)

where adhesion energy is

Ead = Etot(Pd− graphite)− Etot(Pd)− Etot(graphite) (2.37)

The position dependency of the interaction energy is calculated as Pd layer slides

along a lateral direction over graphite. The potential energy during this motion is

calculated as

V (x, FN) = Ead(x, z(x, FN)) + FNz(x, FN)− V0(FN) (2.38)

where V0(FN) is the hollow site configuration energy that would make the potential

V (x, FN) minimum. Subsequently , the position dependent lateral force Fx is intro-

duced in terms of variation of V (x, FN) along x-direction as;
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Fx(x, FN) =
∂V (x, FN)

∂x
(2.39)

The maximum value of Fx corresponds to static friction that leads to stick-slip motion.

The maximum potential energy Vmax(FN) is reached when the Pd layer is stuck at the

edge of the potential energy barrier due to interaction with graphite(stick part). Vmin

is the minimum of the potential energy throughout the motion. Using these values the

dissipation energy as a result of friction is

Edisp = Vmax(FN)− Vmin(FN) (2.40)

where Edisp should be lower than or equal to the amount of increase in potential

energy4V during stick part of motion, in other words the amplitude of the potential

well. The average friction force related to dissipated energy along the x-direction is

then defined as

〈Ff〉 =
4Edisp

4x
(2.41)

Thus, the friction coefficient of Pd-graphite system is determined as the ratio of aver-

age friction force to external normal load as shown at the Eq. 2.42

µ =
〈Ff〉
FN

(2.42)
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CHAPTER 3

GRAPHENE-GRAPHENE INTERACTION

As a means of gaining insight into the layer number and external load dependency

of friction force, benchmark studies were carried out on the graphene-graphene inter-

face. Calculations that will be detailed in this chapter are on monolayer, bilayer and

trilayer graphene. As a first step, the lattice constant of graphene was calculated using

different vdW protocols. Then geometry optimization tests were conducted in order

to obtain the most reliable exchange-correlation functional method to model the van

der Waals interaction between graphene layers. Finally the nature of lateral friction

force between 2 and 3 graphene layers along the direction of bonds was investigated.

3.1 Graphene Lattice Constant and Separation Distance

Before examining the interactions between graphene-graphene interfaces, the opti-

mum length of the C-C bond was calculated by means of calculating the total energy

of a primitive graphene unit cell as a function of the bond length. Further, these cal-

culations were repeated with different exchange-correlation functionals and ultrasoft

pseudopotentials in order to investigate the dependence of the bond length on calcu-

lation parameters. Tests were performed using the PW91 [47], PBE [31] and PZ [48]

flavors of exchange-correlation functionals. The plots of energy vs. C-C bond length

are shown in Figure 3.1.
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(a)

(b) (c)

Figure 3.1: Total energy [eV/C-atom] vs lattice constant [Å] with (a)PBE (b)PW91

(c)PZ pseudopotentials

Among the minimum energy bond length results that are shown in Table 3.1 the PBE

approximation provides the most accurate result. Subsequently equilibrium layer

separation (deq) between two graphene sheets was obtained with different exchange-

correlation functionals by analyzing the interlayer interaction energy at different dis-

tances along the z-direction. Equilibrium separation distance here refers to the relative

position of two graphene sheets with minimum energy. During the deq calculations

the upper layer has been shifted along the z-direction in steps of 0.071Å while lower

layer is fixed.
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Table 3.1: Comparison of experimental and numerically calculated lattice constant of

monolayer graphene with different pseudopotentials and calculation errors

Pseudopotential Lattice Constant [Å] Error [%]

PW91 1.4234 0.24

PBE 1.4194 0.04

LDA 1.4120 0.56

exp 1.42 -

(a) (b)

Figure 3.2: AB-stacked bilayer graphene (a)top view (b) side view

The predominant interaction between layers of multilayer graphene arises due to

weak van der Waals forces. In our preliminary calculations, we perform a comper-

ative study of the optimum interlayer distance in bilayer graphene, involving three

different van der Waals protocols, namely DFT-D, vdW-DF and vdW-DF2-C09.

Graphene planes were initially constructed in the AB stacking configuration as seen

in Figure 3.2 that corresponds to alternating C atoms of the upper layer being in

alignment with the hexagonal hollow sites of the lower layer. This configuration

is in general energetically most favourable geometry rather than on top and bridge

positions. Energy vs distance plots for the three aforementioned vdW protocols with

lattice constant optimization are presented in Figure 3.3. Interaction energy presented

at of the structure is calculated by
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4E = (Ebilayer − 2Emonolayer) (3.1)

where Ebilayer is the total energy per supercell of the fully optimized graphene bilayer

in AB stacking and Emonolayer is total energy of one graphene sheet.

(a)

(b)

Figure 3.3: Graphene (a)C-C bond length evaluated by DFT-D, vdW-DF and vdW-

DF2-C09 functionals and (b)layer separation with vdW-DF2-C09 functional

In Figure 3.3(a) comparative total energy values of all three functionals were
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Table 3.2: Graphene C-C bond length and equilibrium separation of graphene layers

with different vdW protocols. Experimental and previously calculated theoretical

values are also included for comparison

Functional a [Å] d[Å] d[Å]

DFT-D 1.422 3.24 3.25b

vdW-DF 1.431 3.60 3.62c

vdW-DF2-C09 1.421 3.28 3.28

exp. 1.42 3.35a -
a [49] b [50] c [51]

shifted by their minimum for clarity. According to the optimized lattice constant

and separation distance values that are presented in Table 3.2, it can be concluded

that while DFT-D functional overestimates the C bond length and underestimates the

layer separation, vdW-DF overestimates both the lattice constant and the interlayer

distance. However, the Cooper correction implemented vdW-DF2-C09 functional

provides the most accurate results in comparison to the experimental value and pre-

vious ab-initio studies presented for both lattice constant and equilibrium separation

distance. Despite the fact that for the separation distance vdW-DF2-C09 slightly un-

derestimates the experimental value, our results are consistent with previous theoreti-

cal studies. The interaction energy for this configuration is4E=-27.612 meV/C-atom

for deq=3.286 with vdW-DF2-C09 functional.

3.2 Potential Energy Surface

As a means of understanding the magnitude of the interaction energy between the

graphene layers, the potential energy surface (PES) was mapped within the smallest

unit cell. PES calculations were performed by means of successively positioning the

upper graphene layer on a fine grid of 0.03 Å points covering the entire unit cell and

calculating the energy, while the lower layer was held fixed in space. Calculations

were repeated for both DFT-D and vdW-DF2-C09
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(a) (b)

Figure 3.4: PES configuration with (a)DFT-D and (b)vdW-DF2-C09 functionals

functionals with equilibrium separation distances provided by each functional. AB

stacking geometry was selected as the initial configuration. At each point along the

motion of the upper layer with respect to the lower one the vertical force was kept

zero by means of geometry optimization in the z-direction during the motion. In the

contour plots of the PES profile seen in Figure 3.4 darker regions with the largest

interaction represents AB stacking while the lighter one corresponds to on top site

geometry.

The total energy values of the bilayer graphene seen at Figure 3.4 were arranged by

taking difference between the exact value and the minimum energy provided by each

functional in order to present a clear comparison for our results. DFT-D functional

yields smaller potential energy corrugation between different stacking configurations

of layers while it is more distinct for vdW-DF2-C09. Due to the large degree of sym-

metry that crystal interfaces possess, our Au-graphene lateral friction force will be

gathered only along certain high-symmetry directions. As these directions typically

correspond to high commensurability, they should set upper limits to friction forces.

As a preliminary example, we next present friction force results along the zigzag

direction of the graphene-graphene interface. This direction shall, by convention, be

referred to as the "x-direction". The visualisation for sliding movement of upper layer

is as can be seen at Figure 3.5.
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(a) x=0 Å (b) x=1.6756 Å (c) x=1.9312 Å

(d) x=2.3572 Å (e) x=2.8684 Å (f) x=3.2944 Å

(g) x=3.7204 Å (h) x=4.2316 Å

Figure 3.5: Lateral displacement along the x-direction of the upper graphene layer

separated by equilibrium interlayer distance while the bottom layer kept fixed

During the relative motion while keeping the bottom layer fixed, two different ap-

proaches were applied to the sliding motion of the upper plane (a) relaxing just along

z-direction, (b) allowing geometry optimization in all three directions for each lateral

zigzag step. From this point forward, only calculations performed within the vdW-

DF2-C09 functional will be reported. For both methods, the maximum interaction

is observed for the AB stacking configuration, the smallest interaction for the AA

stacking while a smaller local minimum occurs for an intermediate geometry as can

be seen at Figure 3.6(a).
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(a) (b)

Figure 3.6: Lateral energy and friction force for bilayer graphene at different degrees

of freedom

As indicated from the comparative results presented at Figure 3.6 the geometrical

degree of freedom does not cause a considerable difference in terms of lateral energy

and friction forces. Hence, calculations with z-direction optimization only will be

preferred hereafter to avoid computational cost.

3.3 Dependence of the Friction Force on the Number of Layers in Graphene

Interfaces

Systems with varying numbers of layers were tested in order to investigate the vari-

ation of the interaction energy and friction force between graphene sheets. Calcula-

tions were done with the vdW-DF2-C09 functional and kinetic energy cut off was set

to 40 Ry and a 12x12x1 k-point grids. First of all two layered system was analyzed

with initial AB stacking configuration and total zero load on both layers by letting

the upper layer free along z-direction as deduced from our previous work for order

of geometrical freedom test. Following that, a third graphene sheet was added on

top of this bilayer system with ABA stacking configuration keeping the equilibrium

interlayer separation distance between the bottom two layers constant. The same pro-

cedure was applied for relative motion of uppermost while bottom two layers kept

fixed.
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(a) (b)

Figure 3.7: Lateral energy variation with respect to layer number for (a) bilayer

graphene and (b) trilayer graphene

According to our results the interaction energy per C atoms in a unit cell increases

with increasing layer number. As can be seen in Figure 3.7 interaction energy varies

from -22 to -28 meV/C atom for bilayer structure whereas the range is -35 to -39

meV/C-atom for the trilayer structure. This observation of increasing interaction en-

ergy proportional to number of layer is consistent with the previous studies [52].

Similarly, friction force with respect to relative lateral motion of upper monolayer

over mono and bilayer graphene stackings were also investigated. Lateral force re-

sults are obtained by evaluating the numerical derivative of energy with respect to

lateral displacement are shown in Figure 3.8. Average friction force was calculated

by Favg =
|
∑

i
~Fi|

N
where

∑
i
~Fi is the sum of negative friction values which corre-

spond to the "stick" portion of the stick-slip motion and N is the number of data

points along x-direction.

For bilayer graphene average friction was calculated as 0.0105 nN/C-atom as it is

0.0032 nN/C-atom for trilayer system. These comparison reveals that increasing

number of layer without any external load makes the friction force lower in agree-

ment with literature.
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(a) (b)

Figure 3.8: Friction force variation with respect to number of layer for (a) bilayer

graphene and (b) trilayer graphene

3.4 Load Dependency of Friction Force Between Graphene Surfaces

Next, friction behaviour of considered graphene systems under constant load were

analyzed. To achieve this, at every relative lateral displacement site, the upper mono-

layer was shifted in steps of 0.05 along the vertical direction between zi =3.05 Å and

zf =3.62 Å. Two kinds of calculation methods were used to determine the applied

constant load on the system. The first one involves the calculation of the load for each

lateral site by taking the derivative of the interaction energy as a function of interlayer

separation distance by using Eq. 2.36 as proposed by Zhong et al.[7]

The second method simply utilizes the total force on the upper layer per one unit cell

area acquired from the scf calculations performed at distinct interlayer separations.

During the relative sliding motion of the graphene layer through one unit cell, vari-

ation of the external load with respect to interlayer separation can be seen in Figure

3.9 for some of the lateral sites.
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Figure 3.9: Load vs separation distance for bilayer graphene

Table 3.3: Average friction force along x-direction with applied vertical contact force

for bilayer graphene

Fload [nN/C-atom] Favg [nN/C-atom]

0 0.0105

0.01 0.0110

0.02 0.0113

0.03 0.0117

0.04 0.0120

0.05 0.0123

Response of the friction force to the applied load on the bilayer graphene system was

examined by comparing the magnitudes of interaction energy and average friction

under distinct values load as shown in Figure 3.10(a) and 3.10(b). The variation of

average friction force with external load is presented in Table 3.3 and it is concluded

that there is a linear proportionality between applied contact force and average lateral

friction force which is consistent with the non-adhesive surface model proposed in a

previous study [53]. Finally, the friction coefficient of the bilayer graphene system

that was obtained with the relation of µ =
|Ffric|
Fload

can be seen in Figure 3.10(b) and us-

ing this results one can conclude that friction coefficient between two graphene layers

decreases as the applied load increases. Our results shows the inverse proportional-

ity of friction coefficient with applied load in agreement with previous experimental

studies [54].
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(a) (b)

(c) (d)

Figure 3.10: Load dependency of (a)lateral energy and (b)friction force trend

(c)average friction (d)friction coefficient for bilayer graphene

42



(a)

(b) (c)

Figure 3.11: (a)Friction force trend and load dependency of (a)average friction and

(b)friction coefficient along lateral displacement for trilayer graphene

In addition to bilayer graphene structure, behaviour under external load for the trilayer

system was also investigated. The comperative results for applied normal forces are

shown at Figure 3.11. The linear proportionality between friction and normal load

was observed also for the trilayer graphene, with much lower values than bilayer

structure. The obtained average friction values is presented at Table 3.4
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Table 3.4: Average friction force of trilayer graphene system along x-direction with

applied vertical contact force

Fload [nN/C-atom] Favg [nN/C-atom]

0 0.0032

0.01 0.0039

0.02 0.0045

0.03 0.0055

0.04 0.0066

0.05 0.0077
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CHAPTER 4

AU INTERFACE-GRAPHENE INTERACTION

In this section interaction and friction behaviour at interfaces between graphene and

three high symmetry surfaces of Au will be explored. In the friction experiments that

inspired this thesis, the FFM tip is covered with Au, as the exact surface that would

interact with the graphene sheet cannot easily be known (100), (110) and (111) planes

of face centred cubic Au crystal were selected for this study. In order to construct

periodic interfaces of graphene and Au, commensurate unit cells must be identified

that do not cause excessive strain in either material.

After proper cell configurations were obtained, the lateral sliding calculations of the

graphene layer on Au surfaces along the x-direction were conducted under different

magnitudes of load. The kinetic energy cutoff was set to 40 Ry for wave functions and

400 Ry for the charge density. vdW interactions were described using the "vdW-DF2-

C09" exchange functional and a PBE generated ultrasoft peseudopotential. Brillouin

Zone sampling was conducted using different sizes of the Monkhorst-Pack grids ac-

cording to the dimensions of the commensurate unit cells constructed for each Au

interfaces.

4.1 Au Bulk Structure

Before constructing the surfaces, lattice parameters of face centered cubic(fcc) crys-

tal structure of Au were obtained by optimizing the lattice constant. Since there is

covalent bond between Au atoms, adding the vdW interaction would not effect the

lattice constant but for consistency with following calculations vdW-DF2-C09 type
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Figure 4.1: Total energy [Ry] vs lattice constant [Å] of bulk Au

functional was included in the lattice constant calculations. The calculated lattice

constant of the Au bulk structure is 4.10803 Å with an error of 0.7% with respect to

its experimental value of 4.0782 Å and the result is as shown at Figure 4.1

4.2 Low-index Surfaces of Au

Crystal surfaces with different orientations are described by utilizing the Miller in-

dices. The Miller indices of a lattice plane are constructed by first determining the

non-collinear intersection points along three axis and then taking their reciprocals.

In our situations atoms which intercepts the coordinates as (1,∞,∞), (1,1,∞) and

(∞,∞,1) gives the (100), (110) and (001) Miller indices respectively by taking the

inverse of each intercept. The important point that makes Miller index notation very

useful is that, a definition of any plane also represents the other planes parallel to each

other through whole crystal lattice [55].
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(a) (b) (c)

Figure 4.2: Low index (a)100, (b)110, (c)111 surfaces of fcc Au crystal

The Au(100) surface with four-fold symmetry consists of two layers configured in

AB stacking. Basic unit cell of each layer contains one basis atom with four nearest

neighbour atoms. In order to construct Au(100) surface, two lattice vectors were

determined to generate a single layer. Then the second layer was constructed by

shifting the atomic positions of the first layer along x and y directions by −1
2

and −1
2

in terms of fractional coordinates respectively where the separation between A and B

layers determined as 1
2

. Au(100) surface has a square unit cell where the magnitude

of lattice vectors is a√
2

where a is the lattice constant of the structure. Hence lattice

vectors required to construct the (100) surface are

~u1001 = [
a√
2
, 0, 0] (4.1)

~u1002 = [0,
a√
2
, 0]

where the top and side views of Au(100) surface is as shown in Figure 4.3
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(a) (b)

Figure 4.3: Au(100) surface at (a)on top and (b)side view with ABAB stacking

Figure 4.4: Au(110) surface on top view with ABAB stacking

The Au(110) plane with two fold symmetry also represents layers with AB stacking

form similar to Au(100) surface. The Au(110) surface has a rectangular unit cell with

lattice vectors of length a and a
√
2
2

where a is the lattice constant of Au bulk. Lattice

vectors of the surface are

~u1101 = [0, a, 0] (4.2)

~u1102 = [
a
√

2

2
, 0, 0]

Following the construction of one layer using basis atom and lattice vectors acting

on it, the second layer can be defined by displacing it along x,y and z directions by
√
2
4

, 1
2

and 1
2

respectively in terms of fractional coordinates. The top and side views of

Au(110) surface are as shown in Figure 4.4
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Figure 4.5: Au(111) surface on top view of ABC stacking

The Au(111) surface can be determined as the close-packed construction of the fcc

bulk structure and is one of the smoothest low-index surface. The lattice vectors that

form reproducing a rhombohedral unit cell are

~u1111 = [
a
√

2

2
, 0, 0] (4.3)

~u1112 = [
a√
8
,
a
√

3√
8
, 0]

Similarly to the other surfaces, following the construction of the first layer, the second

layer was constructed by shifting the first one along y-z plane with the vector by

[0, −a√
6
, a√

3
]. Then uppermost third layer was constructed by displacing the first layer

by [0, a√
6
, 2a√

3
]. The basis atoms of the unit cell are (0, 0, 0),(

√
2
2
, 0, 0) and (

√
2, 0, 0)

in terms of fractional coordinates. Top view of the three layered Au(111) surface is

presented at Figure 4.5.
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4.3 Graphene on Au interface

4.3.1 Geometry Optimization

In order to provide commensurability for each interface two kinds of method were

tested. In the first method, we simple try to minimize the percent strain on either

material. In the second method, we consider the average lattice constant for graphene

and Au bulk structure and apply the common lattice vectors to construct the proper

unit cell for each one. As mentioned in previous calculations the lattice constant

for Au bulk was obtained as aAu = 4.1080 Å while agraphene = 1.4210 Å with the

vdW-DF2-C09 density functional. The graphene unit cell was arranged in rectan-

gular shape for (100) and (110) surfaces where original two-dimensional rhombus

geometry is kept for the (111) geometry.

The intermediate lattice constant method was implemented for the Au(100) surface

where aavg = agr+aAu

2
was determined to be 2.76452 Å. For the Au(100) surface aAu

was compressed with a 0.943% error where anewAu = 4.14677 Å and a square unit cell

was formed with a new lattice constant defined by 3aavg = 2anewAu . For graphene layer

new lattice constant was selected as anewgr = 1.38 Å by compressing the structure with

a 2.72% error. Rectangular shaped unit cell of graphene was constructed with four

basis atoms and also stretching one of the the lattice vector along x direction with 6%

error additional to intermediate lattice constant method.
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Table 4.1: Percentage error for adjustment of Au(100) and graphene surface unit cells

ax ay

Au(100) +0.943% +0.943%

Graphene -3.170% -2.726%

The best matched unit cells for this interface are as shown at Figure 4.6. Overall error

during matching the unit cell of interfaces are as presented at Table 4.1.

(a)

(b)

Figure 4.6: Graphene and ABA stacked Au(100) unit cell configuration (a)on top and

(b)side view

The construction results in a simulation cell that consists of 32 Au atoms with lattice

vectors
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~v1001 = [8.79, 0, 0] (4.4)

~v1002 = [0, 9.57, 0]

For the Au(110)-graphene system also a rectangular common unit cell was arranged

with previously computed lattice constants for the graphene layer and Au bulk. After

Au(110) surface was constructed by the lattice vectors

~uAu
1 = [0, 1, 0] (4.5)

~uAu
2 = [

√
2/2, 0, 0]

with one basis atom, in order to match the unit cell with graphene Au(110) was com-

pressed along the x direction by 0.62% and stretched along y direction by 1.97%. For

graphene a rectangular unit cell also constructed by the lattice vectors

~ugr1 = [3, 0, 0] (4.6)

~ugr2 = [0,
√

3, 0]

with four basis atoms. In addition the graphene layer was also rotated by 90◦ clock-

wise on the Au(110) and the graphene unit cell was also modified by compressing

along both x and y directions by 0.86% and 1.03% respectively. The list of per cent

deviation of the lattice constants from their original configuration is presented in Ta-

ble 4.2. The matching graphene and Au(110) conventional cell are as shown in Figure

4.7.
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Table 4.2: Percentage error for adjustment of Au(110) and graphene surface unit cells

ax ay

Au(110) +0.60% +1.97%

Graphene -0.86% -1.03%

The lattice vectors of constructed simulation cell that consists of 24 Au atoms are

~v1101 = [14.61, 0, 0] (4.7)

~v1102 = [0,−4.19, 0]

(a)

(b)

Figure 4.7: Graphene and ABA stacked Au(110) unit cell configuration (a)on top and

(b)side view

For the Au(111) geometry both graphene and Au interface constructed has the same

rhombus cell configuration of graphene. Graphene unit cell was constructed by using
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Table 4.3: Percentage error for adjustment of Au(111) and graphene surface unit cells

ax ay

Au(111) -2.37% 0%

Graphene -0.18% -0.18%

the lattice constant agr = 1.4184 Å which differs from its computed value by 0.18%.

After graphene sheet was placed on top of ABCAB stacked five layered Au(111)

interface, Au unit cell was compressed along the x direction by 2.37%. Completely

matching graphene and Au(111) conventional cell is as shown at Figure 4.8 and the

magnitude of deviation in construction from original structures are as seen at Table

4.3.

(a) (b)

Figure 4.8: Graphene and ABCAB stacked Au(111) unit cell configuration (a)on top

and (b)side view

The constructed simulation cells consist of 15 Au atoms with the lattice vectors as

~v1111 = [4.25, 2.45, 0] (4.8)

~v1112 = [4.25,−2.45, 0]

54



4.3.2 Equilibrium Separation Distance

Before determining the minimum energy interlayer separation, internal geometry op-

timization was performed for each of the three systems with a tight convergence

threshold. In the cases for three layered Au(100) and Au(110) configurations all

Au layers were let free while at five layered Au(111) interface the bottom two lay-

ers were kept fixed and uppermost three layers were relaxed with the graphene sheet.

In this part of the chapter equilibrium separation distance between graphene mono-

layer and each Au surface will be examined separately. The corresponding minimum

interaction energy was calculated using

Eint = Etot − (EAusurf
+ Egr) (4.9)

where Etot is total energy, Egr is energy of one graphene layer and EAusurf
is the

energy of the multilayered Au interface. Graphene layer was initially positioned at the

most favorable hollow site configuration on the along x-y plane for all three systems.

The graphene layer was shifted along z-direction incrementally in steps of 0.05 Å

while coordinates of Au interfaces remained fixed.

In the Au(100) case the Brillouin Zone was sampled with 12x12x1 k-points. The

equilibrium interlayer separation corresponding to minimum interaction energy was

calculated to be deq = 3.122 Å as a result of 3rd degree polynomial fit with Emin =

−59.980 meV/C-atom. Brillouin zone sampling of Au(110)-graphene unit cell was

performed with 8x24x1 k-grids. The separation between graphene and ABA stacked

three layered Au(110) surface was found to be deq = 3.0976 Å as a result of 4th degree

polynomial fit with minimum energy Emin = −52.515 meV/C-atom. Equilibrium

interlayer distance between rhombus type unit cell configuration of Au(111) surface

and graphene monolayer was obtained as deq = 3.3837 Å with Emin = −59.781

meV/C-atom. This calculation, on the other hand, was performed with a 24x24x1

k-point grid. Results of our analysis are as shown in Figure 4.9 and Table 4.4

55



Table 4.4: Equilibrium separation distance and interaction energy between graphene

and Au(111), Au(110), Au(100) interfaces

Interface d[Å] Eint[meV/C-atom]

Au(111) 3.384 -59.781

Au(110) 3.098 -52.515

Au(100) 3.122 -59.980

(a) (b)

(c)

Figure 4.9: Equilibrium separation distance for (a)Au(100), (b)Au(110) and

(c)Au(111) surfaces and graphene monolayer
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4.3.3 Load Dependence of Energy and Friction Force

In order to observe the effect of external applied load along z-direction on the interac-

tion energy and tribological behaviour of the graphene-Au system a detailed analysis

of interaction between surfaces during lateral sliding motion of graphene over the Au

interface under several magnitudes of load will be presented in this part. The friction

force and coefficient calculations under load used in this chapter is the same one im-

plemented for the benchmark calculations mentioned in Chapter 3. The illustration

of lateral sliding motion of graphene over Au interfaces can be seen in Figure 4.10.

x=-1.14 Å x=5.75 Å

x=10.59 Å

Figure 4.10: Lateral displacement sites of graphene over Au(110) interface
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4.3.3.1 Au(100) Interface

As the vertical load is increased on graphene both the interaction energy between

materials and friction force shows an increasing trend according to our results that can

be seen at Figure 4.11. Applied contact force larger than 0.005 nN induces positive

interaction energy which means surfaces get so close that their electrons overlap and

repulsive force becomes considerable between materials.

(a)

(b)

Figure 4.11: (a) Interaction energy (b)lateral friction force of vertically loaded

Au(100)-graphene structure in several orders
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Table 4.5: Average friction force between Au(100) and graphene monolayer along

x-direction with applied vertical contact force

Fload [nN/C-atom] Favg [nN/C-atom]

0 0.0026

0.001 0.0027

0.002 0.0030

0.003 0.0034

0.004 0.0038

As the magnitude of the normal load increases, it is observed that a remarkable in-

crease occurs at maximum points of the potential well while minimum interaction

points do not vary significantly. According to Figure 4.11(a) it can also be con-

cluded that applied load suppresses the potential wells in particular regions between

two maximum values of energy, compared to zero load condition. Results from five

different loads for both friction coefficient(µ) and average friction force(Favg) were

comparatively examined as can be seen in Figure 4.12. Favg appears to have a lin-

ear dependence on external load except the values between 0-0.001 nN where the

actual values can be seen at Table 4.5. However, upon closer inspection, the friction

coefficient displays a decreasing trend. The reason behind that behaviour was also

investigated by analysing the charge density differences between materials during

stick-slip motion at corresponding loads.

In order to understand the relation between friction force and the electronic charge

distribution along the relative sliding motion, the average charge density of the system

is investigated under 0 nN/C-atom and 0.001 nN/C-atom loaded conditions. The

average charge variation regarding to stick and slip portions of the motion is also

represented at Figure 4.13. Average charge density is expressed as 4ρ = ρgr−100 −
(ρgr + ρ100) where ρgr/100 is the charge density of whole structure with a 18.5 Å

vacuum along z-direction, ρ100 is the charge density of Au(100) surface and ρgr is

the charge density of graphene which is at 7.1 Å height above the bottom layer of

Au(100). There is not a considerable variation is observed on average charge density,

which gives the insight that friction force does not depend on the average charge of

materials.
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(a) (b)

Figure 4.12: (a) Average lateral friction force (b)friction coefficient with increasing

applied load over graphene-Au(100) interface configuration

(a) (b)

Figure 4.13: (a) Average charge density of stick-slip sites of graphene-Au(100) inter-

face configuration under (a) 0 nN/C-atom (b) 0.005 nN/C-atom normal force
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However, it may depend on the details of the charge distribution and further study is

needed.

4.3.3.2 Au(110) Interface

As the applied vertical load on Au(110)-graphene configuration is increased, it is

obtained that the interaction energy between surfaces also increases as seen at Fig-

ure 4.14(a). A comprehensible stick-slip behaviour in this configuration was not ob-

served. One of the reason that could lead this kind of behaviour is the large unit cell

of Au(110)-graphene structure along zigzag direction and while part of the atoms of

surfaces were configured at on-top position other parts were at bridge or hollow sites

during graphene surface is sliding. The collection of these interactions in different

sites would give rise this kind of disrupted stick-slip motion. As a result of the lack of

variation across different loads of the interaction energy profiles, the friction forces

turn out to be identical for all loads as presented at Figure 4.14(b).
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(a)

(b)

Figure 4.14: (a) Interaction energy (b) lateral friction force of vertically loaded

Au(110)-graphene structure in several order of magnitudes
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Table 4.6: Average friction force between Au(110) and graphene monolayer along

x-direction with applied vertical contact force

Fload [nN/C-atom] Favg [nN/C-atom]

0 0.0028

0.005 0.0030

0.015 0.0032

0.017 0.0033

0.019 0.0034

(a) (b)

Figure 4.15: (a) Average lateral friction force (b)friction coefficient with increasing

applied load over graphene-Au(110) interface configuration

The average friction force acting on the system under several magnitudes of normal

load is presented in Table 4.6. It is observed that the friction force increases with

applied load while friction coefficient follows a decreasing pattern as inversely pro-

portional to the external normal load. The variation of Favg and friction coefficient µ

can be seen in Figure4.15.
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The average charge density of the system under different loads by comparing the stick

and slip positions of graphene is represented in Figure 4.16 and not a considerable

variation is observed.

(a) (b)

Figure 4.16: (a) Average charge density of stick-slip sites of graphene-Au(110) inter-

face configuration under (a) 0 nN/C-atom (b) 0.019 nN/C-atom normal force

4.3.3.3 Au(111) Interface

For the Au(111) interface, an apparent stick-slip behaviour is not observed during

sliding motion of graphene as shown at Figure 4.17(a). Since the Au(111) surface

is the most dense configuration of fcc Au bulk structure, one reason of this behavior

may be due to the multiple stick and slip occurrences concurrently. This feature of

the structure leads the graphene lower stick events during the sliding part of motion

after the graphene has passed over a potential barrier. The visualization of this stick-

slip behaviour can be seen in Figure 4.17(b) in a comparative way in terms of normal

load. The effect of normal load to interaction energy and friction of system is also

presented in Figure 4.17(b) and 4.17(d).
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(a)

(b)

(c) (d)

Figure 4.17: (a),(c) Interaction energy and (b),(d) lateral friction force of vertically

loaded Au(111)-graphene structure in several order of magnitudes

65



Table 4.7: Average friction force between Au(111) and graphene monolayer along

x-direction with applied vertical contact force

Fload [nN/C-atom] Favg [nN/C-atom]

0 0.000249

0.002 0.000251

0.004 0.000254

0.005 0.000255

0.010 0.000260

(a) (b)

Figure 4.18: (a) Average lateral friction force (b)friction coefficient with increasing

applied load over graphene-Au(111) interface configuration

The average friction force acting on system and the friction coefficient between Au(111)

and graphene layer can be seen at Figure 4.18. As the applied load gets larger, aver-

age friction shows an increasing trend proportional to load while µ decreases inversely

proportional to applied load. The estimated values of Favg are presented at Table 4.7
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(a) (b)

Figure 4.19: (a) Average charge density of stick-slip sites of graphene-Au(111) inter-

face configuration under (a) 0 nN/C-atom (b) 0.005 nN/C-atom normal force

The average charge density of Au(111)-graphene system was also examined as shown

in Figure 4.19. The results that shows no difference between stick and slip parts of the

movement, also supports the idea that the effect of average charge density on friction

behavior is inconsiderable.
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CHAPTER 5

CONCLUSION

In this thesis we investigated the effects of applied normal load and layer thickness on

the friction force at atomic scales by utilizing the density functional theory method-

ology. Our calculations focused on the interaction between graphene and three low

dimensional Au surfaces namely Au(100), Au(110) and Au(111).

As a preliminary study, friction behaviour between graphene layers were examined as

presented in Chapter 3. This benchmark calculations was conducted to identify a suit-

able protocol to express the vdW forces dominating the interaction between graphene

layers and it was concluded that the vdW-DF2-C09 provides the most accurate re-

sults. The calculations achieved on bilayer and trilayer graphene structures revealed

that the friction force acting on the structure increases almost linearly proportional

to applied load while friction coefficient µ of interface decreases. It is also observed

there is an inversely proportional relation between the friction and the number of layer

as friction reduces in thinner systems [19]. Our results are also consistent with the

previous first-principle study [56]

In Chapter 4 the friction force between graphene and Au surfaces was investigated.

First of all, we obtained commensurate surfaces for graphene and Au interfaces by

means of subjecting the surfaces to strains with slight percentage errors with respect

to their original lattice parameters. After the equilibrium separation distance was

obtained between graphene and each interface the lateral displacement of graphene

was simulated over Au interfaces. In order to obtain the effect of normal load, in-

terlayer separations of structures were manipulated. Throughout the sliding motion

of graphene over the Au surfaces, several self-consistent DFT calculations were per-
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formed at each position along both lateral and vertical directions.

The most visible stick-slip behaviour was displayed at the graphene/Au(100) inter-

face. The applied external load leads to a significant difference in amplitude of the

interaction energy and as a consequence of this behaviour the friction force required

to pass over an energy barrier increases with load. Again, it is concluded that the

friction force sublinearly increases while friction coefficient decreases as the normal

load increase for this structure.

The normal force did not lead to a significant difference in the amplitude of poten-

tial barrier for graphene/Au(110) structure except for a slight increase. The stick-slip

behavior of friction was not clearly observed at this configuration due to the large

simulation cell size along the sliding path and large number of atoms involving the

interaction. In this structure it was obtained that the average friction increases pro-

portional to applied load while friction coefficient decreases inversely proportional to

it.

For the graphene/Au(111) configuration, the variation of interaction energy showed a

similar behavior to Au(110) system at different values of normal load. However, for

this structure the stick-slip nature of friction was observed more explicitly with the

smaller orders of several stick behaviours during sliding of surface. The reason behind

this presence of stick is the dense configuration of Au(111) surface where several

potential wells occur as the graphene layer changes its position. Thus, the force that

is required for the layer to pass over a high potential well is so large that it leads

a several jumps over smaller potentials, too. This configuration gives rise to large

incommensurability, thereby providing lowest interaction force. For this system, it is

also obtained that the friction force increases while the friction coefficient decreases

as the normal load increases.

With the attempt to investigate the mechanism behind friction between surfaces, aver-

age charge density of each system was also analysed by comparing the zero load and

applied normal load conditions. However, not a significant difference was observed

in average charge density and transfer between surfaces. This result is consistent with

the previous study of Wang et. al. with the proposal of the key reason behind friction

and potential corrugation is the charge density fluctuation rather than average charge

70



density.
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